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The problem of Andreev reflection between a normal metal and a multiband superconductor is addressed.
The appropriate matching conditions for the wave function at the interface are established on the basis of an
extension of quantum waveguide theory to these systems. Interference effects between different bands of the
superconductor manifest themselves in the conductance and the case of FeAs superconductors is specifically
considered, in the framework of a recently proposed effective two-band model, in the sign-reversed s-wave
pairing scenario. Resonant transmission through surface Andreev bound states is found as well as destructive
interference effects that produce zeros in the conductance at normal incidence. Both these effects occur at
nonzero bias voltage.
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I. INTRODUCTION

Electronic scattering at the interface between a normal
metal �N� and a superconductor has been used as a probe to
investigate the electronic properties of superconductors1,2

and, more recently, FeAs superconductors �FAS�, leading, in
the latter case, to different conclusions regarding the pairing
symmetry.3,4 As compared to conventional and high-Tc ma-
terials, the recently discovered FeAs-based superconductors
have a more complex band structure, with a Fermi surface
�FS� consisting of four sheets, two of them are holelike, and
the other two are electronlike.5–8 s-wave, d-wave, and
p-wave pairing scenarios have been proposed to describe the
superconducting state.7,9–12 One of the suggested pairing sce-
narios is the so-called sign-reversed s-wave state �s�-state�,
where the gap function has opposite signs in the holelike and
the electronlike sheets of the FS. Since this is a novel possi-
bility, it deserves some theoretical development. A recent ex-
periment seems to confirm this pairing scenario in a 122
compound.13

Blonder et al.14 devised a theory for Andreev scattering in
isotropic s-wave superconductors which has been later gen-
eralized to unconventional �anisotropic� superconductors.15

These theories apply to one-band superconductors. In the
case of multiband superconductors �MBS�, such as FAS and
heavy-fermion compounds, the bands are usually treated as
separate conduction channels with �classically� additive
conductances,16 such as parallel resistors, thereby neglecting
the quantum-mechanical nature of the scattering problem at
the interface, where interference effects between the trans-
mitted waves in different bands of the MBS are expected.
Such interference effects will lead to new features in the
conductance.

We are thus posed the problem of finding the wave func-
tion for the scattering state of an incident particle from a
one-band metal which is transmitted through two or more
bands inside the superconductor. The splitting of the incident
electron’s probability amplitude among several conduction
channels is the same quantum-mechanical problem as in a
quantum waveguide. Thus, in order to derive the appropriate

matching conditions for the wave function at the interface,
we need to make an extension of quantum waveguide theory.

Applying to the case of FAS, we obtain the differential
conductance curves vs bias voltage and explicitly show the
emergence of Andreev bound states �ABS� in the s�-state
scenario, as a manifestation of interference effects between
the bands, unlike the usual ABS in one-band superconduct-
ors. An unusual feature of the ABS is that they occur at a
finite energy above the Fermi level and disperse with the
electron’s transverse momentum. On the other hand, interfer-
ence effects may also suppress the conductance at certain
energies.

II. QUANTUM WAVEGUIDE THEORY

The splitting of the incident electron’s probability ampli-
tude among several conduction channels is the same
quantum-mechanical problem as in a quantum waveguide. In
a quantum waveguide, three one-dimensional conductors in-
tercept at one point �see Fig. 1�.17 The wave function for a
particle must be continuous and single-valued at the circuit
node O, implying that

��x1 → O� = ��x2 → O� = ��x3 → O� , �1�

where x1 ,x2 ,x3 are coordinates along branches 1, 2, and 3,
respectively. The �probability and charge� current conserva-
tion at the node is guaranteed by the “quantum Kirchhoff”
law,17

FIG. 1. Three branches of a waveguide with a node at O.
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���xj → O�
�xj

= 0, �2�

where the coordinates xj�j=1,2 ,3� must be all of them di-
rected to �or away from� the node O and mj denotes the
particle’s effective mass in branch j.

A simple one-dimensional version of the N/MBS interface
is a tight-binding chain which has a bifurcation at some
point, as shown in Fig. 2. We further assume the sites in
branch 1 to be coupled to branch 2 through a hybridization

operator, V̂. An integer n labels the two-atom unit cell along
the chain.

Let �n , j� denote the site in cell n of chain j. Then, the
incoming particle in branch 3 with wave vector p is de-
scribed by the wave function �inc�n�=eipn+be−ipn, where b
denotes the reflection amplitude.

If chains 1 and 2 were decoupled, a Bloch state in chain j
would have momentum k and energy � j�k�. But now suppose

that an operator V̂ hybridizes Bloch states in the two chains.

The Hamiltonian matrix for the coupled chains 1+2, Ĥ1+2,
has an off-diagonal element, V�k�, and its eigenstates follow
from the eigenproblem,

��1�k� V�k�
V�k� �2�k�

���

�
� = E��

�
� , �3�

which yields two bands, E��k�, so that a Bloch state in the
coupled chains 1+2 has the form

��n� = ��k

�k
�eikn.

The eigenvector components, � and �, denote the wave-
function projections on branches 1 and 2, respectively. The
wave function for the transmitted particle in chains 1+2
reads, for n	0,

�t�n� = C��k

�k
�eikn + D��k�

�k�
�eik�n, �4�

where the momenta satisfy the energy conservation condition
E−�k�=E+�k��=��p�. We now join the wave function in
branch 3 with that in branches 1+2 applying condition �1�
and by considering that the node is reached by formally tak-
ing n→0,

1 + b = C�k + D�k� = C�k + D�k�. �5�

In order to write Kirchhoff rule, we use the following
expression for the probability current:

j�r� = Re��†�r���Ĥ/�k̂���r�	 , �6�

where the Hamiltonian is written in momentum space and

the operator k̂=−i� in the continuum limit. In the tight-
binding problem above, � reduces to � /�n, and the Hamil-

tonian Ĥ is just the scalar dispersion 
�p̂� in branch 3, or the

Hamiltonian matrix Ĥ1+2 in Eq. �3� in branches 1+2. If we
write the Kirchhoff rule as the following relation between the
wave functions at the circuit node:


 �


� p̂
�inc�

n→0−

= �1,1� · 
 �Ĥ1+2

� k̂
�t�

n→0+

, �7�

then, it can easily be checked that the current j�n� is con-
served at the node, by virtue of Eq. �5�. The left multiplica-
tion by �1, 1� gives the sum of the currents through branches
1 and 2. Equation �7� reads

p

mn
�1 − b� = C�1,1� ·

�Ĥ1+2

�k
��k

�k
� + D�1,1� ·

�Ĥ1+2

�k�
��k�

�k�
� .

�8�

where the effective mass mn is defined as the ratio between
the momentum, p, and the group velocity, d
�p� /dp. The
three Eqs. �5� and �8� uniquely determine the amplitudes
b ,C ,D.

The generalization to two spatial dimensions is straight-
forward: the chain in Fig. 2 may be identified with the x
direction and is repeated identically in the perpendicular �y�
direction. The unit-cell label and momentum become two-
dimensional, n and k, respectively. The interface is attained
as nx→0, the transverse momentum component, ky, is con-
served. In Eq. �5� k�k�� is replaced by k�k�� and the Kirch-
hoff rule �Eq. �8� is replaced with

px

mn
�1 − b� = C�1,1� ·

�Ĥ1+2

�kx
��k

�k
� + D�1,1� ·

�Ĥ1+2

�kx�
��k�

�k�
� ,

�9�

ensuring the conservation of the longitudinal current jx at the
node.

III. MODEL FOR A Fe-PNICTIDE SUPERCONDUCTOR

A recent tight-binding model18 for the FAS band structure
assumes two orbitals per unit cell, dxz and dyz. The Hamil-
tonian matrix is

Ĥ�k� = �
x − � 
xy


xy 
y − �
� , �10�

where � denotes the chemical potential and


x = − 2t1 cos�kx� − 2t2 cos�ky� − 4t3 cos�kx�cos�ky� ,


y = − 2t2 cos�kx� − 2t1 cos�ky� − 4t3 cos�kx�cos�ky� ,

FIG. 2. Tight-binding waveguide with three branches. In
branches 1 and 2 there is electron hopping along �t , t�� and perpen-
dicular �V� to the chains. An integer n labels unit cells along the
chain.

M. A. N. ARAÚJO AND P. D. SACRAMENTO PHYSICAL REVIEW B 79, 174529 �2009�

174529-2




xy = − 4t4 sin�kx�sin�ky� . �11�

This is analogous to branches 1 and 2 of the waveguide
above, with the matrix element 
xy now playing the role of
the hybridization V�k� between the branches 1 and 2 and

x�y��k� playing the role of 
1�2��k�. The parameter choice
t1=−1, t2=1.3, t3= t4=−0.85, �=1.45 reproduces the FAS
band structure.18 In the unfolded Brillouin zone �BZ�, the
Fermi surface obtained from Eq. �10� has two electron pock-
ets, centered at �0, ��� and ��� ,0�, and two hole pockets,
centered at �0,0� and �� ,��.

We assume the edge of the superconductor lying along the
y direction. Then, an incident electron on the interface with
small py is transmitted through two Fermi-surface pockets:
the electron pocket �“e FS”� and the hole pocket �“h FS”�,
see Fig. 3. We here work out the Andreev reflection problem
in a FS consisting of just one hole and one-electron pocket.
The generalization of the theory to the four pocket FS in the
reduced BZ or to a model with more atoms per unit cell3,19,20

is straightforward. We shall concentrate below on the
s�-state scenario for superconductivity that has recently been
suggested,7 and show that it produces ABS as a consequence
of interference between transmitted waves in the two FS
pockets.

An elementary excitation in the bulk superconductor with
wave vector k has the wave function

�k�r� = eik·r�
uk�k

uk�k

vk�k

vk�k

� , �12�

where the coherence factors uk ,vk, denoting the amplitudes
of the particle and hole components, respectively, obey the
Bogolubov–deGennes equations,21

�Ĥ�k� ̂

̂ − Ĥ�k�
��

uk�k

uk�k

vk�k

vk�k

� = E�
uk�k

uk�k

vk�k

vk�k

� , �13�

with ̂=�k�diag�1,1�. The superconducting gap �k� is as-
sumed to take on different values, h�k� and e�q�, in the h
and e FS, respectively. In the s�-state scenario, e�k� and
h�k� have opposite signs.7,21

The quasiparticle has a transverse momentum �py which
is conserved. The incident particle from the normal metal has
momentum p+=��p+ , py� and the Andreev reflected hole has

momentum p−=��p− , py�. The transmitted particle �hole� in
the superconductor’s e band has momentum q+

=��q+ , py��q−=��−q− , py�; but the transmitted particle
�hole� in the superconductor’s h band has momentum k−

=��−k− , py��k+=��k+ , py� because the effective mass, mh, of
the h FS is negative and transmitted particles/holes must
have positive group velocity, see Fig. 3. The wave function
for a scattering state with transverse momentum �py can be
written as

��r� = eipyy��N�x���− x� + �S�x���x� ,

where ��x� denotes the Heaviside function. The wave func-
tion in the normal single-band metal has both particle �u� and
hole �v� components,

�N�x � 0� = �1

0
�eip+x + b�1

0
�e−ip+x + a�0

1
�eip−x, �14�

where a is the Andreev reflection amplitude. Near the Fermi
level, p+� p−� pF

�1− �py / pF�2, where �pF denotes the
Fermi momentum in the normal metal, which has Fermi ve-
locity vF=�pF /mn. The transmitted quasiparticle into the su-
perconductor is a linear superposition of Bloch states of the
form �12� in the two bands,

eipyy�S�x 	 0� = C�k+�r� + D�k−�r� + E�q+�r� + F�q−�r� .

�15�

We now apply the waveguide matching conditions, at x
=0, between Eqs. �14� and �15�, to the u and v components
of the wave function, separately. The condition for the wave
function to be single valued at the node reads as

1 + b = Cuk+�k+ + Duk−�k− + Euq+�q+ + Fuq−�q−,

1 + b = Cuk+�k+ + Duk−�k− + Euq+�q+ + Fuq−�q−,

a = Cvk+�k+ + Dvk−�k− + Evq+�q+ + Fvq−�q−,

a = Cvk+�k+ + Dvk−�k− + Evq+�q+ + Fvq−�q−. �16�

By solving the system �Eq. �16� by the determinant method,
the amplitudes C , D , E , F can be expressed as functions
of a and b, as

C =
�1 + b��1 + a�2

�
, �17�

D =
�1 + b��3 + a�4

�
, �18�

E =
�1 + b��5 + a�6

�
, �19�

F =
�1 + b��7 + a�8

�
, �20�

where � is the determinant of the system �Eq. �16� and
reads

FIG. 3. Schematic representation of the Fermi surfaces of the
normal metal �left�, and the superconductor’s h band �middle� and e
band �right�.
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� = �
u+�+ u−�− u+��+� u−��−�

u+�+ u−�− u+��+� u−��−�

v+�+ v−�− v+��+� v−��−�

v+�+ v−�− v+��+� v−��−�
� , �21�

and the coefficients �i are obtained from Cramer’s rule.
We now define

��k� =
mn

p+
�1,1� · �u

�Ĥ

�kx
+ v

�̂

�kx
���

�
� , �22�

��k� =
mn

p−
�1,1� · �v

�Ĥ

�kx
− u

�̂

�kx
���

�
� , �23�

and write condition �9� for this case as

1 − b = C��k+� + D��k−� + E��q+� + F��q−� ,

a = C��k+� + D��k−� + E��q+� + F��q−� . �24�

In order to simulate interface disorder, a potential barrier
U��x−�� is assumed in the normal metal ���0� and the limit
�→0− is taken.22 We now show that the effect of the barrier
amounts to making the replacement,

1 − b → 1 − b − 2iZ�1 + b�pF/p+, �25�

a → a�1 − 2iZpF/p+� , �26�

on the right-hand side of Eq. �24�, where the dimensionless
barrier parameter14 Z=U /�vF. To see this, we write the wave
function in the normal single-band metal with both particle
and hole components,

�N�x � �� = �1

0
�eip+x + b�1

0
�e−ip+x + a�0

1
�eip−x, �27�

and

�N�� � x � 0� = �̃�1

0
�eip+x + �̃�1

0
�e−ip+x + �̃�0

1
�eip−x

+ �̃�0

1
�e−ip−x. �28�

The matching conditions at x=��0 give the equations

�N��−� = �N��+� , �29�

−
�2

2mn
��N� ��+� − �N� ��−� + U�N��� = 0. �30�

Taking the limit �→0− we obtain

�̃ + �̃ = 1 + b , �31�

�̃ − �̃ =
2mnU

i�2p+ �1 + b� + 1 − b , �32�

�̃ + �̃ = a , �33�

�̃ − �̃ = �2mnU

i�2p− + 1�a . �34�

The waveguide matching conditions must be applied be-
tween Eqs. �28� and �15� at x=0. But Eqs. �31�–�34� allow

the elimination of the amplitudes �̃ , �̃ , �̃ , �̃ altogether,
finally showing that the replacements �Eqs. �25� and �26�
have to be done in Eq. �24�.

The values of the Andreev and normal reflection ampli-
tudes, a and b, can be obtained by solving the linear system
�Eqs. �16� and �24�. Introducing

�11 = �1��k+� + �3��k−� + �5��q+� + �7��q−� ,

�12 = �2��k+� + �4��k−� + �6��q+� + �8��q−� ,

�21 = �1��k+� + �3��k−� + �5��q+� + �7��q−� ,

�22 = �2��k+� + �4��k−� + �6��q+� + �8��q−� , �35�

we obtain

a =
2�21/�

�1 + 2iZ +
�11

�
��1 − 2iZ −

�22

�
� +

�12�21

�2

, �36�

and

b =
�1 − 2iZ −

�11

�
��1 − 2iZ −

�22

�
� −

�12�21

�2

�1 + 2iZ +
�11

�
��1 − 2iZ −

�22

�
� +

�12�21

�2

. �37�

The contribution of this scattering state to the differential
conductance is given by

gs = 1 + �a�2 − �b�2. �38�

The normal-state conductance, gn=1− �bn�2, is obtained
when �k�=0. Experimentally, the integral of gs �or gn� over
the transverse momenta of the incident electrons, �S
=�gsdpy �or �N=�gndpy� is measured.15 We define the inte-
grated relative differential conductance as �S /�N.
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FIG. 4. Energy of the surface Andreev bound state as function of
the transverse momentum. e=−h=0.02.
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IV. RESULTS

The conductances �S and gs�E� have been calculated from
the above theory using the model �Eqs. �10� and �11�. We
discuss the results below. In the calculations, the normal
metal is assumed to have Fermi wave vector pF=� and ve-
locity vF=1.83.

When �=0 the reflection amplitudes, hence gs, become
independent of the barrier parameter Z and this is precisely
the condition for the occurrence of Andreev bound
states.15,23,24 Figure 4 shows the energy of the Andreev
bound state as function of the transverse momentum. Con-
trary to the usual case of single-band nonconventional super-
conductors, the ABS energy is nonzero. It has a nonmono-
tonic dependence on py and, for py =0, it coincides with
min��h� , �e��. The dispersion of the ABS energy is in quali-
tative agreement with the results of Ref. 25.

Figure 5 shows the conductance gs as function of incident
electron energy above the Fermi level, for a clean �Z=0�
interface in the case where �h�� �e�. When the transverse
momentum increases, gs becomes more strongly peaked near
the energy of the ABS. In the case where �h�	 �e� there is
a destructive interference effect leading to a zero, at normal
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FIG. 5. �Color online� Conductance gs as function of incident
electron energy for three different values of the transverse momen-
tum, for a clean �Z=0� interface. The superconductor bands are
modeled by Eqs. �10� and �11�. The normal conductance is shown
for comparison.
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incidence, in the conductance, as shown in Fig. 6.
The effect of interface disorder is shown in Figs. 7–9.

Under increasing disorder, conductance peaks appear closer
to the energy of ABS. The conductance gs is independent of
the disorder parameter, Z, at the ABS energy, therefore, all
the conductance curves gs�E�, for different Z values, inter-
cept at the same point, as shown in Fig. 7. As disorder in-
creases the conductance tends to decrease and, therefore, the
normal-state conductance decreases as Z increases. Since at
the ABS the conductance gs is independent of the disorder
parameter, Z, peaks appear in the relative conductance at the
ABS, which become more pronounced as Z gets larger. The
relative conductance gs /gn is plotted for two ratios of the gap
parameters in Figs. 8 and 9, illustrating the positions of the
peaks. The case when h=−e is shown in Fig. 9. It is also
seen, once again, that destructive interference effects in the
superconductor between the e and h bands cause the conduc-
tance to vanish at normal incidence.

Since the system is two-dimensional we have to integrate
over the possible incident angles, or over py. The integrated
relative conductance is shown in Fig. 10 for three interface
disorder strengths. The peak structure for large values of the
barrier strength reveals the existence of ABS.

In a recent preprint,23 a theory is provided that qualita-
tively predicts the interference effects in the multiband su-
perconductor, namely, the suppression of conductance and
the appearance of ABS, in agreement with our findings. In
Ref. 23, the wave function in the superconductor is written in
the same form as Eq. �15� but it is assumed that the ratios of
the amplitudes E /C and F /D are equal �to a phenomenologi-
cal parameter � introduced in Ref. 23�. Using our waveguide

theory for the interface matching conditions, we find that the
ratios E /C and F /D are different, as can be seen from Fig.
11.

V. SUMMARY

We have introduced a generalization of the quantum
waveguide theory to determine the appropriate boundary
conditions for the wave function at the interface between a
normal metal and a multiband superconductor. We have
shown that resonant transmission and destructive interfer-
ence effects occur in the sign-reversed scenario for pnictide
superconductors. Unlike other unconventional superconduct-
ors, Andreev bound states at finite energies are brought about
by these interference effects.

On the experimental side, polycrystalline samples have
been used so far. The results obtained above describe an
interface parallel to the nearest Fe-Fe bonding. Therefore,
experiments with single crystals are highly desirable. If the
edge of the sample is such that the conservation of the trans-
verse momentum py intercepts only one FS pocket, existing
one-band theories apply. The above quantum waveguide
theory can in principle be used to describe other MBS, such
as the heavy-fermion materials.22
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